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Domain sizes of the Gardner volume for the Ising reversed wedge perceptron

G. J. Bex and C. Van den Broeck
Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

~Received 5 November 1996; revised manuscript received 20 March 1997!

We investigate the subdivision of the Gardner volume into its internal representations for the Ising reversed
wedge perceptron. The results are surprisingly complicated, displaying transitions between several qualitatively
different regimes and involving replica symmetry breaking. These features remain completely hidden in the
calculation of the total Gardner volume.@S1063-651X~97!04107-X#

PACS number~s!: 87.10.1e, 05.50.1q, 02.50.Cw, 64.60.Ak
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I. INTRODUCTION

Models of neural networks have been studied over the
15 years, in the hope of obtaining insight and guidance i
the fundamental problems of memory, learning, and gen
alization. The statistical mechanics of disordered syste
provides an elegant tool for the theoretical investigation
these models. It was applied with success to the study
perceptrons and simple multilayer networks@1–12#. Simple
as these models may appear from the viewpoint of pract
applications, they display a number of interesting and so
times unexpected properties. In this paper, we will focus
attention on one of the surprises encountered in the stud
the Ising reversed wedge perceptron~IRWP!, which is a
simple variant of the normal perceptron. It was found@13#
that, for a specific widthK of the wedge,K5K*5A2 ln2,
the IWRP saturates both the information-theoretic up
bound for storage of random data and the lower bound
generalization when learning from a teacher IRWP. A sim
lar property holds true for the parity machine with nonov
lapping receptive fields@14,15#. Recently, Monasson an
O’Kane @17# introduced a modification of the standard Gar
ner calculation that allows one to unravel the contributions
the ‘‘internal configurations’’ to the total Gardner volume.
this paper, we will apply this technique to the capacity c
culation of the IRWP. It turns out that the resulting subdi
sion of the Gardner volume is highly nontrivial, displayin
transitions between several qualitatively different regim
and involving replica symmetry breaking. This complicat
behavior remains completely hidden and unnoticed at
level of the total Gardner volume, which can be calcula
exactly using a straightforward replica-symmetric calculat
or even by a trivial annealed calculation forK5K* .

II. GARDNER CALCULATION FOR THE ISING
REVERSED WEDGE PERCEPTRON

The so-called reversed wedge perceptron was introdu
and studied in Refs.@16,19,20,21#. It is a simple variant of
the normal perceptron@22#, returning the following binary
output classification j0 when presented with an
N-dimensional input patternj:

j05sgnFgS J•j
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with the transfer function

g~x!5~x1K !x~x2K !. ~2!

K is called the width of the wedge. For the valueK50, one
recovers the familiar signum transfer function of the perc
tron. A choiceK.0 corresponds to the insertion of a wed
of width 2K aroundx50 or, geometrically speaking, to th
introduction of two extra hyperplanes, parallel and on bo
sides of the hyperplane orthogonal toJ through the origin.
The classification switches at the crossing of each plane
a result, the reversed wedge perceptron can perform slig
more complicated classifications, such as the XOR, wh
need not be linearly separable. We will focus here on
Ising version of the reversed wedge perceptron~IRWP!,
characterized by the additional constraint that the wei
vectorJ should be of the Ising typeJi561, i51,...,N. The
storage capacity and generalization properties of the IR
were studied in Ref.@13#. Here we review, for comparison
with the results below, in more detail the Gardner calculat
for the storage problem.

Consider a set of patterns$jm,m51,...,p% with corre-
sponding classifications$j0

m ,m51,...,p%. We will assume
that the patterns and their classifications are taken at ran
and independent of one another. Furthermore, we will foll
the normalization conventionuju25N. The Gardner volume
VG is defined as the number of IRWP’s that classify the
of p patterns correctly. This number can obviously be writt
as follows:

VG5(
J

)
m51

p

uFgS J•jmj0
m

AN D G , ~3!

whereu(x) is the Heaviside function, and the sum overJ
runs over all the Ising vectors. Clearly, the value ofVG de-
pends on the specific set of patterns, and is hence a ran
number. However, the intensive quenched entropy lnVG /N is
expected to be self-averaging in the limitN→`, p→` with
fixed ratioa5p/N:

sG5 lim
N→`

1

N
lnVG5 lim

N→`

1

N
^ lnVG&. ~4!

The average over the patterns and their classification ca
performed by the standard replica method. A replic
symmetric~RS! ansatz yields the following result, cf.@13#:
870 © 1997 The American Physical Society
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sG5extr
$q,q̂%

FG~q,q̂!, ~5!

with

FG~q,q̂![2 1
2 ~12q!q̂1E

2`

1`

Dz ln@2 cosh~zAq̂!#

1aE
2`

1`

Dz ln@H~v1!1H~v2!2H~v0!#.

~6!

Dz stands for the Gaussian measure exp(2z2/2)/A2p,
H(v)5*v

`
•Dz, andv0 , v2 , andv1 are defined as

v0[
zAq

A12q
and v6[

zAq6K

A12q
. ~7!

The values ofq and q̂ which extremize the quenche
entropy~5! are found as the solution to the following corr
sponding saddle-point equations:

q̂5
a

2p~12q!
E

2`

1`

DtF e2v1
2 /22e2v0

2/21e2v2
2 /2

H~v1!1H~v2!2H~v0!
G2,

~8!

q5E
2`

1`

Dz tanh2~zAq̂!. ~9!

The entropy is represented as a function ofa in Fig. 1 for
several values ofK. Note that negative values ofsG are
inconsistent with the fact that the typical number of solutio
should be an integer number. A RS-breaking calculation
needed to describe thisa region correctly@23,24#. It is how-
ever expected that the RS ansatz is valid up to the p
where the entropy becomes zero. An extension of
Almeida-Thouless~AT! calculation to the IRWP indeed con
firms that the RS saddle point is still locally stable at th
point, cf. Fig. 2. The Gardner storage capacityaG is then
identified as thea-value for which the RS entropy given i

FIG. 1. The quenched intensive entropysG as a function ofa
for different widths of the wedgeK50.0 ~full line!, K50.3 ~dashed
line!, andK5A2 ln2 ~dotted line!.
s
is

nt
e

Eq. ~5! becomes equal to zero. In Fig. 2, we plot the result
aG as a function of the widthK of the wedge. The RS resu
is in good agreement with numerical simulations combin
with a finite size scaling analysis~see the inset in Fig. 2!. For
K50, we recover the results for the ordinary Ising perce
tron with aG'0.83 andaAT'1.015. For increasing value
of K, the storage capacityaG first increases until the particu
lar value ofK5K*5A2 ln2 is reached, where the storag
capacity saturates the upper boundaG51. As K increases
beyondK* , the capacity again decreases and one return
the behavior of the ordinary Ising perceptron asK→`.

The special status ofK5K* derives from the following
property:

E
2K*

0

Dz z1E
K*

`

Dz z50. ~10!

As a result, one finds thatsG(a)5(12a)ln2 up to capacity
aG51. In other words, the annealed approximation^ lnVG&
5ln^VG&, in which the Gardner volume is reduced exactly
half with each new pattern resulting inaG51, is exact in this
case. The remarkable properties of the IRWP obeying
~10! turn out to be a general feature for problems satisfyin
similar zero average overlap condition, not only in capac
problems, but also in supervised and unsupervised learn
A detailed discussion including all these scenarios can
found in Refs.@25, 26#.

For completeness, we briefly mention the properties of
parameterq. q has the physical meaning of the overlapq
5J1•J2 /N between 2 solutionsJ1 andJ2 chosen at random
in the Gardner volume. In Fig. 3, we representq versusK at
capacitya5aG . Note thatq is well below the value of 1, a
feature familiar from the study of the Ising perceptron.
particular, forK5K* one finds thatq50. In fact, one veri-
fies thatq50, ;a<aG51. In other words, the vectors o
the Gardner volume are typically orthogonal to each oth
This is consistent with the finding that the annealed appro
mation is exact in this case.

FIG. 2. The Gardner storage capacityaG , as obtained by appli-
cation of the zero entropy criterion on the RS entropy given by
~5! ~full line!, and the Almeida-ThoulessaAT line ~dashed line!,
corresponding to thea value at which the RS saddle point becom
locally unstable, both as a function ofK. Inset is forK5K* .
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III. INTERNAL REPRESENTATIONS: THEORY

To better understand the behavior of an IRWP, we turn
a more detailed study of the structure of the Gardner volu
More precisely, internal representations are introduced
distinguishing the nonconnected domains of the rever
wedge and the induced size distribution is calculated. T
technique which will be used was introduced recently
Monasson and O’Kane@17# in the context of multilayer per-
ceptrons with continuous couplings~see also Ref.@27#!, and
has been applied to a number of related problems@28–
31,18#.

Returning to the capacity calculation of Eq.~3!, we note
that each pattern$jm,j0

m% restricts the perceptronsJ, that
return a correct classification, to be in one of two nonco
nected domains, with either the overlapjmj0

m
•J/AN.K or

2K,jmj0
m
•J/AN,0. These domains can unambiguous

be characterized by ap-dimensional vectort, called the in-
ternal representation, with componentstm51 or tm521
depending on whether the region with positive or negat
overlap has chosen for pattern$jm,j0

m%, m51,...,p.
The number of perceptronsVt belonging to a specific

internal representationt in the Gardner volume is now

Vt5(
J

)
m51

p

uXgS jmj0
m
•J

AN D CuS jmj0
m
•J

AN
tmD , ~11!

while the total number of perceptrons in the Gardner volu
is given by

VG5(
t
Vt . ~12!

Our purpose is to classify the domains according to th
size. More precisely, we would like to evaluate the num
V(V) of domainsVt that have a given sizeV. Both V(V)
andV are expected to be exponential inN. It is therefore
convenient to work instead with the quantitiesk,

k[2
1

N
lnV, ~13!

andc(k),

FIG. 3. The overlapq at the storage capacityaG for varying
width of the reversed wedgeK.
o
e.
y
d
e
y

-

e

e

ir
r

c~k![
1

N
lnV~V!. ~14!

Since the number of Ising perceptrons in each domain
obviously an integer between 1 and 2N, we find that2 ln2
<k<0. The casek51` corresponding to empty domain
will not appear in our calculation; see below. The number
domains is also an integer and maximally equal to 2p, hence
0<c(k)<a ln2, disregarding again the casec(k)52`
corresponding toV50.

Following Monasson and O’Kane@17#, the function
c(k) can be obtained by Legendre transformation of the f
lowing ‘‘partition sum’’ Z~R! ~where the parameterR plays
the role of an inverse temperature!:

Z~R!5(
t

~Vt!
R

5E dk exp$N@c~k!2Rk#%

;exp$N max
k

@c~k!2Rk#%. ~15!

We will evaluate this quantity for integer values ofR, and
extract the result for real values ofR by analytic continua-
tion. Note that empty domains are automatically discarded
this procedure. In particular, meaningful results are obtai
for R,0, while Z~R! converges, in the limitR→0, to the
number of domains with nonzero volume. ForR51, one of
course recovers the total Gardner volume@cf. Eq. ~12!#.

SinceZ~R! is a random variable exponential inN, its
typical value is obtained as usual by calculating t
asymptotic behavior of̂lnZ(R)&. The average can be pe
formed using the replica technique. The basic quantity to
evaluated is thus

w~R!5 lim
N→`

1

N
^ lnZ~R!&

5 lim
N→`

1

N
lim
n→`

]

]n K H(
t

~Vt!
RJ nL

5max
k

@c~k!2Rk#. ~16!

Note that two types of replica indices will appear; the us
ones arising from then power, which we will denote byr or
s, and the ones from the replication through the powerR,
which we will denote bya or b. Consequently, the averag
introduces the overlap of the different replicasJar

•Jbs/N
5Qrs

ab , depending on these two types of indices. Obviou
one has thatQrr

aa51. Also, two vectorsJar andJbs with r
5s share the same characteristic vectort, and are thus
members of the same domain. Vectors withrÞs belong to
different domains. To proceed, we will restrict ourselves t
calculation in RS. We assume that there are just two type
overlaps:q1 is the mean overlap of weight vectors in th
same domain,Qrs

ab5q1 for aÞb, r5s, andq0 is the over-
lap between vectors of different domains,Qrs

ab5q0 for r
Þs. Note that with this RS ansatz the structure of the ov
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lap matrix is similar to that for a one-step Parisi replica sy
metry breaking. Following a standard calculation,w~R! is
found to be

w~R!5 extr
q0 ,q̂0 ,q1 ,q̂1

F~q0 ,q̂0 ,q1 ,q̂1 ,R!, ~17!

with

F~q0 ,q̂0 ,q1 ,q̂1 ,R![
R
2

$Rq0q̂01@~12R!q121#q̂1%

1E
2`

1`

Dz0 ln E
2`

1`

Dz1

3@2 cosh~z0Aq̂01z1Aq̂12q̂0!#
R

1aE
2`

1`

Dz0 ln E
2`

1`

Dz1$H
R~u1!

1@H~u2!2H~u0!#
R% ~18!

andu0 , u2 andu1 defined as

u0[
z1Aq12q01z0Aq0

A12q1
and

u6[
z1Aq12q01z0Aq06K

A12q1.
~19!
- The following special cases clarify the further discussio
ForR51, one finds that:

F~q0 ,q̂0 ,q1 ,q̂1 ,R51!5FG~q0 ,q̂0!, ~20!

so that the RS result for the Gardner entropy~5! is retrieved,
w(R51)5sG . As it should be, the subdivision of this vo
ume into its internal representations does not modify its s
Furthermore, in the limitq1→1 and q̂1→`, for which a
relevant extremum may appear,~see below!, F becomes in-
dependent ofR and is related toFG as follows:

F ~q0 ,q̂0 ,q1→1,q̂1→`,R!5FG~q0 ,q̂0R2!. ~21!

In this limit, w~R! becomes a constant, independent ofR,
and equal to the Gardner entropysG . Finally, one finds that
F(q0 ,q̂0 ,q1 ,q̂1 ,R→0) converges toa ln2 providedq̂0 and
q̂1 stay finite andq1 does not converge to 1.

To find the values ofq0 , q̂0 , q1 , andq̂1 which extremize
expression~18!, two cases have to be considered. One ex
mum lies at the boundary of the solution spaceq1→1 and
q̂1→` with q5q0 and q̂5q̂0R2 satisfying the Gardner
saddle points Eqs.~8! and ~9!. The other extremum, corre
sponding to a saddle-point lying inside the parameter sp
has to be determined numerically by solving the saddle-p
equations reproduced in the Appendix. The choice betw
the two extrema is made on the basis of the following e
tremization conditions forF:

R,0: q0→min, q1→max, ~22!

0,R,1: q0→min, q1→min,
ransfer
FIG. 4. Number of domainsc( k̄)/(a ln2) as a function of the inverse number of perceptrons per domain for a reversed wedge t
function with widthK50 ~a!, K50.675~b!, K5A2 ln2 ~c!, andK53.0 ~d!, respectively.



e

lt

-

d
om

in

th
ee
in
s
ile
he

e-
io
R

he
cr

it
ed
to

’
our
d it
en-

ts

re-
of

r a
l-
no
h
For
d

pec-

en-

of

874 56G. J. BEX AND C. Van den BROECK
1,R: q0→min, q1→max.

The domain size distribution can be obtained fromw~R!
by Legendre transformation@cf. Eq. ~16!#. Denoting by k̄
5 k̄(R) the value ofk which maximizes the right-hand sid
of Eq. ~16! for a given value ofR, we find that

k̄52
]w

]R , ~23!

c~ k̄!5w~R!1Rk̄. ~24!

Note that for theR values dominated by theq1→1,
q̂1→` extremum,c( k̄) collapses to a single point atk̄50,
with valuec(0)5sG @cf. Eq. ~22!#.

For negative values ofR, the discussion of the resu
given in Eqs.~18! and ~20! is plagued by divergences@30#.
For example, the last integral overz1 diverges in the param
eter region (12q1)1R(q12q0),0. We believe that pa-
rameter values in this region are unphysical and can be
carded. The results that we will give below are obtained fr
the saddle point that continues to exist forR,0 in the re-
gion (12q1)1R(q12q0).0. While we have not found a
conclusive argument to dismiss the divergence, the follow
consideration may help. Consider a set ofnR vectorsJi , i
51, . . . ,nR chosen fromn regions ~mutual overlapq0!
with R vectors per region~mutual overlap q1!. Then
(S iJi

25nR@11(R21)q11(n21)Rq0#. If the right-hand
side of this expression were to be negative forR,0, we
could conclude~by letting n→0 that 12q11R(q12q0)
.0. If, on the other hand, this were not the case, then
divergence would appear in all the problems that have b
discussed so far with the Monasson-O’Kane technique,
way that seems to be unrelated to the underlying physic
the problem. We believe that this is rather unlikely, wh
simulation results furthermore support the validity of t
saddle point outside the region of the divergence.

Finally, we turn our attention to the validity of the abov
derived RS results. The resulting domain size distribut
possesses features symptomatic of the breakdown of
positive values ofk̄, and negative values ofc( k̄). To per-
form an explicit one-step RS-breaking calculation is rat
complicated, but one expects that the usual freezing pres
tion gives the correct result, namely, replacingw~R! in the
region with negative slope by the horizontal tangent at
minimum ~cf. Fig. 6!, @32#. Furthermore, as was document
in Ref. @28#, a continuous breaking of RS is expected
invalidate the low and high end parts of thec( k̄) curves.
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IV. INTERNAL REPRESENTATIONS: RESULTS

It is rather time consuming to obtain the ‘‘nontrivial’
numerical solutions from the saddle-point equations: the f
equations to be solved each contain double integrals, an
takes about 24 h on a Digital Alphastation 600/266 to g
erate onec( k̄) curve. In Fig. 4, we reproducec( k̄)/a ln2 as
a function of k̄/ ln2 for the valuesK50, K50.675, K
5A2 ln2, andK53 respectively. The black dot represen
the volumes corresponding toR51, which make the domi-
nant contribution to the total Gardner volume. Also rep
sented by a diamond is the volume of the upper section
the reversed wedge, i.e., corresponding totm51,;m.

We discuss in some detail the picture that emerges fo
width K5A2 ln2. Even though the total Gardner volume fo
lows the trivial behavior of the annealed approximation,
less than five differenta regimes can be distinguished wit
regard to the qualitative behavior of the domain sizes.
small values ofa ~regime I!, c( k̄) has the typical bell-shape
form, vanishing at lower and upperk̄ values corresponding
to the largest and smallest available domain sizes, res
tively, and reaching a maximum ofa ln2 at some interme-
diate k̄ value. A first critical a value is reached ata1
'0.21, when the smallest domain size is no longer expon
tially large inN, i.e., the correspondingk̄ value is 0. From
then on, the smallest domains have ak̄50 size~regime II!. A
second critical valuea2'0.346 is reached when the size

FIG. 5. a2 anda3 as a function of the width of the wedgeK. At
thesea values the size of the most numerous domains (R50) and
that of the domains contributing most to the total volume (R51)
reach the polynomial boundaryk̄50, respectively.
FIG. 6. w(R) for a50.5 ~a!, a5a3 ~b!, anda50.7 ~c! for K5A2 ln2. The solid line is the correct curve~see the discussion in the text!.
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FIG. 7. Overlap of perceptrons in different domainsq0 and within the same domainq1 as a function of the inverse number of perceptrons
per domain for a reversed wedge transfer function with widthK5A2 ln2 ~a! andK53.0 ~b!, respectively.
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the most numerous domains reaches thek̄50 boundary. Up
to this a value the number of these domains is found to
exactly equal to the maximum 2p, or c( k̄)5a ln 2; in other
words every new pattern shatters all the previous piece
the Gardner volume. For larger valuesa.a2 the number of
nonempty domains is less than 2p ~regime III!. In Fig. 5,
a2 is plotted as a function ofK. The next regime starts whe
the size of the domains contributing most to the total volu
of the version space~the dot on the curves in Fig. 4! reaches
k̄50. At this valuea3'0.638~see Fig. 5 fora3 as a func-
tion of K!, the extremum atq1→1 and q̂1→` takes over,
and, for largera values, thec( k̄) curve starts to show a ga
~regime IV!. The origin of this remarkable feature is clarifie
in Fig. 6:w(R) has been plotted according to the two sad
points, and the solid curve is the correct result with a tran
tion from one type of solution to the other atR51. Note that
for a.a3 , the log of the number of nonempty domains
now exactly equal tosG . Finally at a5a4'0.75 the con-
tinuous section of thec( k̄) curve disappears and the on
remaining domains havek̄50 ~regime V!. The number of
these domains reaches the zero entropy thresholdc( k̄)50 at
capacitya5aG51.

We also mention the behavior of a few other quantities
interest. The triangle in Fig. 4 indicates the fate of the v
ume corresponding to the ‘‘cap’’ region, i.e., the domain

which t5(1,1, . . . ,1). Note that forK5K* it moves from
being one of the larger volumes (a50.1) to becoming one
of the smaller (a50.2), and eventually disappearing ata
'0.23 ~which is the Gardner capacity for the problem wi
positive stabilityK* !. In Fig. 7 we reproduce the overlap
within a domainq1 and between different domainsq0 as a
function of k̄. Note that there is always a specific value
k̄ for which the overlapq0 between such domains is exact
0. For this k̄ value the annealed approximation^ lnZ(R)&
5 ln^Z(R)& is exact. One verifies that forK5K* this hap-
pens for thek̄ value corresponding toR51, in agreement
with our previous finding that the annealed calculation
exact for the Gardner volume.
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V. DISCUSSION

Our results are very similar to those obtained recently
the parity machine with nonoverlapping receptive fields@18#,
but the calculations in our case are complicated by the
that the overlapq0 is in general nonzero. Both works illus
trate that some ‘‘large-scale’’ features,in casu the total
Gardner volume, can have a simple and smooth behav
correctly reproduced by a calculation as simple as the
nealed approximation, while its ‘‘small-scale’’ structure, co
responding to the subdivision in its constitutive domains, d
plays various qualitatively different regimes, requiring mu
more involved calculations including the replica symme
breaking machinery. These observations go against the in
tive notion that replica symmetry breaking at a gross le
could be avoided by turning to a description in terms of mo
detailed variables, such as the internal representations
fact, the breaking up of the solution space into nonconnec
pieces is not a sufficient condition for replica symme
breaking. As documented here for the case of the reve
wedge perceptron, the Gardner volume consists of an ex
nentially large number of disconnected pieces;a<aG of
varying sizes, while replica symmetry~and even the an-
nealed calculation forK5K* ! are most probably exact. Th
probability distribution of the overlaps between the elem
of the Gardner volume has a singled peak centered at the
Gardnerq, since two randomly chosenJ vectors will with
probability one be chosen from two different subvolum
that dominate the total volume~i.e., subvolumes with size
corresponding toR51.! Also, it removes some support from
the appealing idea, put forward for networks with continuo
couplings@17#, that a breakdown of RS in the space of i
ternal representations for theR51 domains signals RS
breaking for the total Gardner volume.
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APPENDIX

q̂05
a

2p~12q1!
E

2`

1` Dz0
M2~y! H E

2`

1`

Dz1

3$H~u1!R21e2u1
2 /21@H~u2!

2H~u0!#
R21@e2u2

2 /22e2u0
2/2#%J 2, ~A1!

q05E
2`

1` Dz0
N2~z0!

H E
2`

1`

Dz1@2 cosh~z0Aq̂0

1z1Aq̂12q̂0!#
R212 sinh~z0Aq̂01z1Aq̂12q̂0!J 2,
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