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We investigate the subdivision of the Gardner volume into its internal representations for the Ising reversed
wedge perceptron. The results are surprisingly complicated, displaying transitions between several qualitatively
different regimes and involving replica symmetry breaking. These features remain completely hidden in the
calculation of the total Gardner volumgs1063-651X97)04107-X

PACS numbgs): 87.10:+e, 05.50+q, 02.50.Cw, 64.60.Ak

I. INTRODUCTION with the transfer function

Models of neural networks have been studied over the last 9(x) = (x+K)x(x—K). @

15 years, in the hope of obtaining insight angl guidance intq< is called the width of the wedge. For the valke=0, one
th_e fqndamental pfob'ems of memory, Iegrnmg, and 98Nelrecovers the familiar signum transfer function of the percep-
alization. The statistical mechanics of disordered system

provides an elegant tool for the theoretical investigation o fon. A choiceK>0 corresponds to the insertion of a wedge

these models. It was applied with success to the study o?f width 2K aroundx=0 or, geometrically speaking, to the

perceptrons and simple mutiayer netvofs 13, Siple 100UEIEn of o et Pyperdans, parall and o bt
as these models may appear from the viewpoint of practic he classificat)i/c?n sf)witches at '?he crossin gf h Ig ' A
applications, they display a number of interesting and some- g of €ach piane. AS
times unexpected properties. In this paper, we will focus ouft result, the reversed wedge percepiron can perform slightly

attention on one of the surprises encountered in the study Jpore complicated classifications, such as the XOR, which

. L need not be linearly separable. We will focus here on the
the Ising reversed wedge perceptrd®RWP), which is a ; :
simple variant of the normal perceptron. It was foUd@| Ising version of the reversed wedge percept@RWP),

that, for a specific width of the wedgeK = K* = \2 In2, characterized by the additional constraint that the weight

the IWRP saturates both the information-theoretic uppe?’eCtor‘] should be of the Ising typ&==1,i=1,... N. The

storage capacity and generalization properties of the IRWS
bound for storage of random data and the lower bound f.of}veregstudigd inyReifl??]. Here we re\ﬁevx? for comparison

%(arn(erroall|gzt|or:10}/(\j/2et?ulee?cr)rr1ltrlh%frc;r:;tartne;Ccr:}ﬁ; Ivsitwhprio?];\llglrl-—mth the results below, in more detail the Gardner calculation
property parity for the storage problem.

lapping receptive field§14,15. Recently, Monasson and . _ . )
O’Kane[17] introduced a modification of the standard Gard- Cor?3|der a _sgt o_f patﬁernﬁ“,,u—l,...,p} W.Ith corre
fspondlng classification$éf ,u=1,...p}. We will assume

ner calculation that allows one to unravel the contributions Oth t th it d their classificati tak t q
the “internal configurations” to the total Gardner volume. In atthe patterns and their classitications are taken at random

this paper, we will apply this technique to the capacity cal-2nd independent of one aqothgr. Furthermore, we will follow
culation of the IRWP. It turns out that the resulting subdivi-'{;‘e 'no(;n}ghzgtlon rclonventllaorfl legw-ll;he Eard?er yolurr]ne
sion of the Gardner volume is highly nontrivial, displaying *G Is defined as the number o s that classify the set

transitions between several qualitatively different regimes®f P Patterns correctly. This number can obviously be written

and involving replica symmetry breaking. This complicated®S follows:

behavior remains completely hidden and unnoticed at the p 3 "

level of the total Gardner volume, which can be calculated VGZE H P g( '§#§0> , 3)
exactly using a straightforward replica-symmetric calculation J =1 JN

or even by a trivial annealed calculation figr=K*. _ o .
where 6(x) is the Heaviside function, and the sum ouker

runs over all the Ising vectors. Clearly, the value\Gf de-
pends on the specific set of patterns, and is hence a random
number. However, the intensive quenched entropydrN is

The so-called reversed wedge perceptron was introducekPected to be self-averaging in the limit-c, p— o with
and studied in Refd:16,19,20,2]. It is a simple variant of fixed ratio a=p/N:
the normal perceptrof22], returning the following binary

Il. GARDNER CALCULATION FOR THE ISING
REVERSED WEDGE PERCEPTRON

output  classification ¢, when presented with an sg= lim iInVG= lim £<|HVG>- 4
N-dimensional input patterg: N_ N N— N
3 The average over the patterns and their classification can be
&=sg1 g _g (1) performed by the standard replica method. A replica-
JN symmetric(RS) ansatz yields the following result, df13]:
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FIG. 1. The quenched intensive entrogy as a function ofa
for different widths of the wedgk = 0.0 (full line), K=0.3 (dashed
line), andK=+/2 In2 (dotted ling.

SG:eXtrFG(qlél)i (5)

{a.g
with
~ ~ +oe ~
Fe(a,0)=-2(1-q)q+ f_ Dz In[2 costz\q)]
+ o0

+af_ Dz In[H(v;)+H(v_)—H(vg)].

(6)

Dz stands for the Gaussian measure exp(2)/\2m,
H(v)=/[,-Dz, andvg, v_, andv . are defined as

z\/a z\/aiK

Vo= — .

° J1-q V1—q

The values ofq and g which extremize the quenched

entropy(5) are found as the solution to the following corre-
sponding saddle-point equations:

and

*

()

i w o e—uilz_e—ug/ere—uz_/z 2
q) J-= (v4)+H(v_)—H(vo)
(8)
q=J+tz tanif(z/q). 9)

The entropy is represented as a functiornvoh Fig. 1 for
several values oK. Note that negative values &f; are
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FIG. 2. The Gardner storage capacity , as obtained by appli-
cation of the zero entropy criterion on the RS entropy given by Eq.
(5) (full line), and the Almeida-Thoulesat line (dashed ling
corresponding to the value at which the RS saddle point becomes
locally unstable, both as a function Kf. Inset is forK =K*.

Eq. (5) becomes equal to zero. In Fig. 2, we plot the resulting
ag as a function of the widtk of the wedge. The RS result
is in good agreement with numerical simulations combined
with a finite size scaling analysisee the inset in Fig.)2For
K=0, we recover the results for the ordinary Ising percep-
tron with ag~0.83 andaat~1.015. For increasing values
of K, the storage capacity first increases until the particu-
lar value ofK=K*=21In2 is reached, where the storage
capacity saturates the upper bousg=1. As K increases
beyondK*, the capacity again decreases and one returns to
the behavior of the ordinary Ising perceptronkas-oo.

The special status df=K* derives from the following

property:

0 0
f Dz z+f Dz z=0.
—K* K*

As a result, one finds that;(a) =(1— «)In2 up to capacity
ag=1. In other words, the annealed approximatidmV)
=In(Vg), in which the Gardner volume is reduced exactly by
half with each new pattern resulting éfs =1, is exact in this
case. The remarkable properties of the IRWP obeying Eq.
(10) turn out to be a general feature for problems satisfying a
similar zero average overlap condition, not only in capacity
problems, but also in supervised and unsupervised learning.
A detailed discussion including all these scenarios can be
found in Refs[25, 26].

For completeness, we briefly mention the properties of the
parameterg. g has the physical meaning of the overlgp

(10

inconsistent with the fact that the typical number of solutions=J;-J,/N between 2 solutiond, andJ, chosen at random
should be an integer number. A RS-breaking calculation isn the Gardner volume. In Fig. 3, we represgntersusK at

needed to describe thisregion correctly23,24]. It is how-

capacitya= ag . Note thatq is well below the value of 1, a

ever expected that the RS ansatz is valid up to the poirfieature familiar from the study of the Ising perceptron. In
where the entropy becomes zero. An extension of thgarticular, forkK=K* one finds thag=0. In fact, one veri-

Almeida-Thoules$AT) calculation to the IRWP indeed con-

fies thatgq=0, Va<ag=1. In other words, the vectors of

firms that the RS saddle point is still locally stable at thisthe Gardner volume are typically orthogonal to each other.

point, cf. Fig. 2. The Gardner storage capaaiy is then
identified as thex-value for which the RS entropy given in

This is consistent with the finding that the annealed approxi-
mation is exact in this case.
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A e c(k)E%InQ(V). (14

q(K) 1
L ] Since the number of Ising perceptrons in each domain is
i i obviously an integer between 1 an#f,2we find that—In2
<k=0. The cas&k= + corresponding to empty domains
will not appear in our calculation; see below. The number of
domains is also an integer and maximally equaltptZence
O0=<c(k)=<a In2, disregarding again the casgk)=—x
corresponding td) =0.

Following Monasson and O’'Kangl7], the function

AT C b c(k) can be obtained by Legendre transformation of the fol-

0.0 . 0 . . . ) . lowing “partition sum” Z(R) (where the paramet& plays
the role of an inverse temperatiire

0.56 |
0.5

FIG. 3. The overlapy at the storage capacityg for varying
width of the reversed wedgdé. Z(R)=2 (V)R
T

Ill. INTERNAL REPRESENTATIONS: THEORY

) =J dk exp[N[c(k)—Rk]}

To better understand the behavior of an IRWP, we turn to
a more detailed study of the structure of the Gardner volume. N _
More precisely, internal representations are introduced by exp(N mkan{c(k) R} (15
distinguishing the nonconnected domains of the reversed
wedge and the induced size distribution is calculated. The e will evaluate this quantity for integer values®f and
technique which will be used was introduced recently byextract the result for real values & by analytic continua-
Monasson and O’Kangl7] in the context of multilayer per- tion. Note that empty domains are automatically discarded in
ceptrons with continuous couplingsee also Ref.27]), and  this procedure. In particular, meaningful results are obtained
has been applied to a number of related probld28-  for R<0, while Z(R) converges, in the limiR—0, to the

31,18. _ _ number of domains with nonzero volume. FRr=1, one of
Returning to the capacity calculation of E@), we note  course recovers the total Gardner volufog Eq. (12)].
that each patterqé”, £} restricts the perceptron3, that Since Z(R) is a random variable exponential M, its

return a correct classification, to be in one of two noncon+ypical value is obtained as usual by calculating the
nected domains, with either the overlgpés-J/N>K or asymptotic behavior oflInZ(R)). The average can be per-
—K<ggy-dl JN<O0. These domains can unambiguously formed using the replica technique. The basic quantity to be
be characterized by p-dimensional vector, called the in-  evaluated is thus
ternal representation, with components=1 or 7,=—1
depending on whether the region with positive or negative
overlap has chosen for pattef&, &6}, u=1,...p.

The number of perceptrong, belonging to a specific

@(R)= lim %(InZ(R))

N— oo

internal representatior in the Gardner volume is now o1 d ® n
= lim N lim n E (V,
p N— oo n—o T
&80 £¢6-J
v=> 11 e(g( 0 .|, (A1 _ _
T u=1 JN N —mfic(k) RK]. (16)

while the total number of perceptrons in the Gardner volume L . )

is given by Note that two types of replica indices will appear; the usual

ones arising from tha power, which we will denote by or
o, and the ones from the replication through the poer
Ve=2, V.. (12)  which we will denote by or 8. Consequently, the average
’ introduces the overlap of the different replica¥’ - J?/N

—(aB - " :
Our purpose is to classify the domains according to their~ Qpo - d€pending on these two types of indices. Obviously

size. More precisely, we would like to evaluate the numbeione has thaQgf'=1. Also, two vectors)* andJ*” with p

Q(V) of domainsV, that have a given siz¥. Both Q(V) =o¢ share the same characteristic vectgrand are thus
and V are expected to be exponential f It is therefore ~Mmembers of the same domain. Vectors with o belong to
convenient to work instead with the quantities different domains. To proceed, we will restrict ourselves to a

calculation in RS. We assume that there are just two types of
overlaps:q, is the mean overlap of weight vectors in the
=N InV, (13 same domainQ;’ﬁqu for a# B, p=o, andqg is the over-

o

lap between vectors of different domair@fjﬁzqo for p

(o8

andc(k), # o. Note that with this RS ansatz the structure of the over-
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lap matrix is similar to that for a one-step Parisi replica sym-

metry breaking. Following a standard calculatigi(R) is
found to be

7

extr  F(0g,do.d1,01,R),

do.%.01.%

¢(R)
with

F(do.Go,01,01,R)= 7 {RAplo+[(1~R)q1~1]0a}

+ o0 + oo

+J Dzolnf Dz,

X[2 costizo\Go+ 21— 00) 1*
+

+af Dzy In

+

| oz,

+[H(u_)—H(ug) 1%} (18)
andug, u_ andu, defined as
u _ZlVQ1_QO+ZO\/q—O and
0=
v1i-a;
" 221VQ1_CI0+20\/%iK (19
B Vv1—q;.
10 M T T
(@)
0.8 - -
_ 0.6 -
e(k)/(aln2) [
04 —
0.2 —
0.0 Y b | 1 b Py
-1.0 -0.8 -0.6 -0.4 -0.2 0.t
k/In2
1.0 C T T
©) I
0.8
_ 0.6
c(k)/(aIn2) [
0.4
0.2
0.0 L
1.0 -0.8 -0.6 _ -0.4 -0.2 0.0
k/In2
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The following special cases clarify the further discussion.
For R=1, one finds that:
f(Qo:ﬁo:QLQLR:1):~7'—G(QO=610)7 (20)
so that the RS result for the Gardner entr@pyis retrieved,
e(R=1)=s¢. As it should be, the subdivision of this vol-
ume into its internal representations does not modify its size.
Furthermore, in the limitg;—1 andq,—, for which a
relevant extremum may appe&see beloy, F becomes in-
dependent ofR and is related toFg as follows:
F(0o,00.01—1,01—2,R) = Fa(do,GoR?).  (21)
In this limit, ¢(R) becomes a constant, independentif
and equal to the Gardner entropy. Finally, one finds that
F(90,00,91,01,R—0) converges tar In2 providedq, and
q, stay finite andy, does not converge to 1.

To find the values of|y, o, q;, andg, which extremize
expressior(18), two cases have to be considered. One extre-
mum lies at the boundary of the solution spage~1 and
q,—% with q=q, and q=Q,R? satisfying the Gardner
saddle points Eq98) and (9). The other extremum, corre-
sponding to a saddle-point lying inside the parameter space,
has to be determined numerically by solving the saddle-point
equations reproduced in the Appendix. The choice between
the two extrema is made on the basis of the following ex-
tremization conditions forF:

R<0: (o—min, q;—max, (22
0<R<1: (Qg—min, g;— min,
1.0 R
(b)
0.8
_ 0.6
1 e(k)/(0ln2) [
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-1.0 -0.8
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FIG. 4. Number of domains(k_)/(a In2) as a function of the inverse number of perceptrons per domain for a reversed wedge transfer

function with widthK=0 (a), K=0.675(b), K=+21In2 (c), andK =

3.0 (d), respectively.
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1<R: (Qg—min, g;— max.

The domain size distribution can be obtained frefiR)
by Legendre transformatiofcf. Eq. (16)]. Denoting byk

=Kk(R) the value ofk which maximizes the right-hand side
of Eqg. (16) for a given value ofR, we find that

- e
c(k)=o(R)+Rk. (24)

Note that for theR values dominated by thej;—1,
q,— extremum,c(k) collapses to a single point &=0,
with valuec(0)=sg [cf. Eq. (22)].

For negative values ofR, the discussion of the result
given in Egs.(18) and (20) is plagued by divergencd80].
For example, the last integral ovey diverges in the param-
eter region (tq;)+R(q;—0qe)<0. We believe that pa-

rameter values in this region are unphysical and can be di
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FIG. 5. a, andaj as a function of the width of the wedde At
thesea values the size of the most numerous domaiRs=Q) and
that of the domains contributing most to the total volurfie=(1)

ggach the polynomial boundaky= 0, respectively.

carded. The results that we will give below are obtained from

the saddle point that continues to exist f@k<0 in the re-
gion (1-q4) +R(q:—qp)>0. While we have not found a

IV. INTERNAL REPRESENTATIONS: RESULTS

It is rather time consuming to obtain the “nontrivial”

conclusive argument to dismiss the divergence, the followinghumerical solutions from the saddle-point equations: the four

consideration may help. Consider a setn@® vectorsJ;, i
=1,... nR chosen fromn regions (mutual overlapqg)
with R vectors per region(mutual overlapq;). Then
(Zi32=nR[1+(R-1)g,+(n—1)Rq,]. If the right-hand
side of this expression were to be negative o0, we
could conclude(by letting n—0 that 1-q;+7R(dq;—do)

>0. If, on the other hand, this were not the case, then th
divergence would appear in all the problems that have bee
discussed so far with the Monasson-O’Kane technique, in

way that seems to be unrelated to the underlying physics o
the problem. We believe that this is rather unlikely, while
simulation results furthermore support the validity of the

saddle point outside the region of the divergence.

Finally, we turn our attention to the validity of the above-
derived RS results. The resulting domain size distributio
possesses features symptomatic of the breakdown of R

positive values ok, and negative values af(k). To per-

form an explicit one-step RS-breaking calculation is rathe

equations to be solved each contain double integrals, and it
takes about 24 h on a Digital Alphastation 600/266 to gen-
erate onec(k) curve. In Fig. 4, we reproducg(k)/« In2 as

a function of k/In2 for the valuesK=0, K=0.675, K
=+21In2, andK=3 respectively. The black dot represents
the volumes corresponding ®= 1, which make the domi-
fiant contribution to the total Gardner volume. Also repre-
Sented by a diamond is the volume of the upper section of
e reversed wedge, i.e., correspondingte- 1,V u.

We discuss in some detail the picture that emerges for a
width K= y2 In2. Even though the total Gardner volume fol-
lows the trivial behavior of the annealed approximation, no
less than five differentr regimes can be distinguished with

nregard to the qualitative behavior of the domain sizes. For
gmall values ofx (regime ), c(k) has the typical bell-shaped

form, vanishing at lower and uppé&rvalues corresponding

fo the largest and smallest available domain sizes, respec-

complicated, but one expects that the usual freezing prescriplvely. and reaching a maximum af In2 at some interme-

tion gives the correct result, namely, replacig@R) in the

diate k value. A first critical « value is reached at;

region with negative slope by the horizontal tangent at its~0.21, when the smallest domain size is no longer exponen-
minimum (cf. Fig. 6), [32]. Furthermore, as was documented tially large in N, i.e., the corresponding value is 0. From
in Ref. [28], a continuous breaking of RS is expected tothen on, the smallest domains havie=a0 size(regime I)). A

invalidate the low and high end parts of thék) curves.

second critical valuer,~0.346 is reached when the size of

040 030 - ;
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FIG. 6. ¢(R) for a=0.5(a), a= a3 (b), anda=0.7 (c) for K= /2 In2. The solid line is the correct curysee the discussion in the text
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FIG. 7. Overlap of perceptrons in different domaipsand within the same domai, as a function of the inverse number of perceptrons
per domain for a reversed wedge transfer function with width/2 In2 (a) andK= 3.0 (b), respectively.

the most numerous domains reacheskhked boundary. Up V. DISCUSSION
to this « value the number of these domains is found to be g resylts are very similar to those obtained recently for

exactly equal to the maximumP2or c(k) = a In 2; in other  the parity machine with nonoverlapping receptive fidlt],
words every new pattern shatters all the previous pieces djut the calculations in our case are complicated by the fact
the Gardner volume. For larger values «, the number of  that the overlam is in general nonzero. Both works illus-
nonempty domains is less tha® Zregime lll). In Fig. 5, trate that some “large-scale” features) casu the total
as, is plotted as a function df. The next regime starts when Gardner volume, can have a simple and smooth behavior,
the size of the domains contributing most to the total volumecorrectly reproduced by a calculation as simple as the an-
of the version spacéhe dot on the curves in Fig) 4eaches nealed approximation, while its “small-scale” structure, cor-
k=0. At this valuea;~0.638(see Fig. 5 fora, as a func-  résponding to the subdivision in its constitutive domains, dis-
tion of K), the extremum at;—1 andd;— takes over, plays various qualltatlv_ely dlfferen'F regimes, requiring much
o more involved calculations including the replica symmetry
and, for largera values, thec(k) curve starts to show a gap

(regime V). The origin of this remarkable feature is clarified breaking machinery. These observations go against the intui-

tive notion that replica symmetry breaking at a gross level

in Fig. 6: ¢(R) has been plotted according to the two saddleq 4 pe avoided by turning to a description in terms of more

points, and the solid curve is the correct result with a transiyerajled variables, such as the internal representations. In
tion from one type of solution to the other&t=1. Note that  fact, the breaking up of the solution space into nonconnected
for a> a3, the log of the number of nonempty domains is pieces is not a sufficient condition for replica symmetry
now exactly equal teg. Finally at@=a,~0.75 the con-  preaking. As documented here for the case of the reversed
tinuous section of the(k) curve disappears and the only wedge perceptron, the Gardner volume consists of an expo-
remaining domains have=0 (regime \). The number of nentially large number of disconnected piedéa< ag of

these domains reaches the zero entropy threst@élg=0 at ~ Varying sizes, while replica symmetriand even the an-
capacitya=ag=1 Py st nealed calculation foK =K*) are most probably exact. The

We also mention the behavior of a few other quantities inrobability distribution of the overlaps between the element
interest. The triangle in Fig. 4 indicates the fate of the voI-Of the Gardner volume has a singlepeak centered at the

ume corresponding to the “cap” region. i.e.. the domain fc)rGardnerq, since two randomly choseh vectors will with
P 9 p-region, 1.€., probability one be chosen from two different subvolumes

which 7=(1,1,...,1). Note that foK=K" it moves from  that dominate the total volum@.e., subvolumes with size
being one of the larger volumesg{0.1) to becoming one  corresponding t&R=1.) Also, it removes some support from
of the smaller ¢=0.2), and eventually disappearing @t the appealing idea, put forward for networks with continuous
~0.23 (which is the Gardner capacity for the problem with couplings[17], that a breakdown of RS in the space of in-
positive stabilityK*). In Fig. 7 we reproduce the overlaps ternal representations for thR=1 domains signals RS
within a domaing; and between different domaim as a  breaking for the total Gardner volume.

function of k. Note that there is always a specific value of
k for which the overlag, between such domains is exactly
0. For thisk value the annealed approximatiginZ(R))
=In(Z(R)) is_exact. One verifies that fdf =K* this hap- We thank R. Monasson for useful comments, especially in
pens for thek value corresponding t&® =1, in agreement the context of the divergence f®<0. We also thank the
with our previous finding that the annealed calculation isProgram on Inter-University Attraction Poles, Prime Minis-
exact for the Gardner volume. ter's Office, Belgian Government for financial support and
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APPENDIX

A o J’+°° DZO
= 2m(1—qy J . MAy)

{JM Dz,
X{H ()R e 24 [H(u )

2
—H(uo>]“[e“2’2—e”5’2]}] . (A1)

+e Dz,

Go= —oo /\/2(20)

2
+2;\0;-Go)° 12 sinr(zo@ﬂwal—ao)] :

(A2)

—o

[wazl[Z coshizg\/do

a +o

- Dz,
21—y ). My

) fWDzl{H(unR*Ze*“i

—o0
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+[H(U_)~H(ug)]*2[e P e W27, (A3)

B +o DZO + o _
ql—wa Nzg) Lc Dz,{[2 costizo\qo

+217G,— 00) 17 %2 sinh(zg\Go+ 21181~ G0) 1,

(A4)
where

+ oo

_Dzy{H(u ) +[H(u-) —H(up)]%}
(A5)

M(ZO)Ef

with u, , u_ andug as defined in Eq(20), and

4o
MZO)EJ B Dz,[ 2 costizg\Ao+ 2,181~ Go) 1%

(A6)
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